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PROPAGATION OF PLANE SURFACE WAVES OVER AN UNDERWATER OBSTACLE 

AND A SUBMERGED PLATE 

I. V. Sturova UDC 532.59 

The investigation, in the linear formulation, of wave diffraction by bottom irregulari- 
ties with shadow zones, begun in [i], is continued. A rectangular underwater obstacle with 
a "lid" and a rigidly clamped horizontal plate (Fig. i) are considered. 

Wave scattering by an ordinary rectangular obstacle (without a "lid") has been studied 
in detail, both theoretically [2-5] and experimentally [6]. In [5] it is assumed that away 
from the obstacle the fluid is infinitely deep. Wave scattering by a horizontal plate on a 
free surface was examined in [3, 7]. 

i. Waves are propagated in a layer of ideal incompressible liquid of depth HI, on the 
bottom of which lies a rectangular obstacle with a "lid" in the form of an infinitely thin 
rigid horizontal plate (Fig. la). This plate is located at a depth H 2 below the free sur- 
face. The length of the plate L may be greater than the base of the obstacle AB, so that on 
the left and right of the obstacle there are cavities of length s and s respectively. The 
coordinate system is so chosen that the x axis coincides with the undisturbed level of the 
free surface, and the y axis is directed upwards through the left-hand end of the lid. The 
motion of the fluid is assumed to be potential everywhere except at the corner points. 

The approaching wave travels in the direction of the positive x axis and is determined 

iagchkl(y + H,) exp(iklx); a and by t h e  v e l o c i t y  p o t e n t i a l  ~o(X,y,t):%(x, y)exp(-- lot), where % =  ochklH 1 

a r e  t he  ampl i t ude  and f r e q u e n c y  o f  t he  wave, and g i s  t he  a c c e l e r a t i o n  of  g r a v i t y ;  t he  wave 
number kz i s  de t e r mi ned  from t h e  e q u a t i o n  

~ = gklthklHl" ( i. I) 

Here and in what f o l l o w s  in  a l l  t h e  e x p r e s s i o n s  c o n t a i n i n g  t he  f a c t o r  e x p ( - i a t )  on ly  the  r e a l  
p a r t  has p h y s i c a l  s i g n i f i c a n c e .  

We w i l l  c o n s i d e r  s t e a d y  waves and seek the  v e l o c i t y  p o t e n t i a l  of  t h e  d i s t u r b e d  f low in 
t he  form r  y ,  t )  = ~ (x ,  y ) e x p ( - i a t ) .  In o r d e r  to  de t e rmine  ~ ( x ,  y) we must s o l v e  t he  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 3, pp. 55-62, May-June, 1991. Original article submitted April 12, 1990. 
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problem 

5 9 = 0  (x, y ~ S ) ,  ( i . 2 )  

229 -- ga~/ag = 0 (y = 0), a~/On = 0 (on the solid boundaries), 

where  S i s  t h e  domain  o c c u p i e d  by t h e  f l u i d ,  and n i s  t h e  n o r m a l  t o  t h e  b o t t o m .  The r e f l e c t e d  
and t r a n s m i t t e d  waves  mus t  s a t i s f y  t h e  r a d i a t i o n  c o n d i t i o n s  a s  Ix[ + =. 

For  s o l v i n g  t h e  p r o b l e m  ( 1 . 2 )  we w i l l  u s e  a m a t c h i n g  method  s i m i l a r  t o  t h a t  u s e d  in  [1 ,  
2 ] .  The domain  S i s  d i v i d e d  i n t o  f i v e  r e c t a n g u l a r  p a r t s :  

S~ 

S i =  [--oo < x < 0 ,  - - H l < y ~ 0 ] ,  

$2 = [ 0 < x < L ,  - - H  2 ~ g ~ 0 ] ,  

S 3 : [ L < x < c ~ ,  - - H l ~ y ~ 0 ] ,  

S i = [ O < x <  /i, --Hi~ Y ~  --H2],  

= [ L - -  1 2 < x < L ,  - - H i < ~ F < ~ - - H 2 ] ,  

( i . 3 )  

in each of whichg(x, y) is denoted byTj(x, y) (j = i, ..., 5). We will seek the functions 
9~ in the form of an expansion in the eigenfunctions of the corresponding boundary value 
problems: 

co 

qk = To + Ao exp ( - -  ik~x) Y~ (g) § ~ A,~ exp (k~x) Yl,~ (Y), 
? i ,~  i 

92 = [B0 exp (ik~x) + C o exp ( - -  ik~x)] Y2 (Y) + 
oo 

-k E [Bn exp (k2nx) Jr Cn exp (-- k2nX)] Y2n (9), 

~, = D O exp (ik~x) Y1 (g) -~ ~-~ Dn exp ( - -  k~x)  Y~,, (g), 

q~ = ao -k ~ am oh ~m (ll - -  x) cos ~m (Y ~k H1), 

% = Vo + ~ ~'~ ch p~(z - -  L + l~) cos [3m (y + HO. 
' m = l  

(1.4) 

Here ~m = ~m/h; h = HI - H2; and kln (n = i, 2, ...) are the roots of the equation 

o ~ = --gktgkH1. ( 1 . 5 )  

The q u a n t i t i e s  k 2 and k2n a r e  d e t e r m i n e d  f r o m  t h e  Eqs .  ( 1 . 1 )  and ( 1 . 5 )  w i t h  H 1 r e p l a c e d  
by H 2. The e i g e n f u n c t i o n s  Yi ,  Yin ( i  = 1, 2) a r e  o r t h o g o n a l  and n o r m a l i z e d  a s  f o l l o w s :  

0 
ch k i (y q- Hi) 

Yi (y) V ~  ,. A i =  J ch 2 k ~ ( y + H i )  dg,~ 
- - H  i 
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0 

cos ki~ (u + H~) j '  
Yi~ (b') = "  l / - -~ i  ~ , Ain = cos 2 ki~ (y + H~) ,:/y. 

- - H  i 

Because of the continuity of the motion in the domain S on the boundary of the domains Sj, 

pressure and horizontal velocity matching conditions are imposed, from which it follows that: 
when x = 0 

q)l = (~2, aq)l/ax = Oq).z/Ox ( - -Ha ~ y ~ 0), 

% = % ,  O%/Ox = O%/Ox (--H~ ~ y ~ --H.2), 

and when x = L 

(p~ = %,  a(~,/az = o(p~/az ( - - H ,  <~ y <~ 0), 

(P3 ~- ~5, O(Pa,'Ox = Oq)5/Ox ( - - / /1  ~ y < --He) .  

Using the reduction method, we replace the infinite series in (1.4) by finite sums with N and 
M terms, respectively. The matching conditions (1.6) are integrally satisfied, i.e., they 
are successively multiplied by the eigenfunctions Yi, Yin (n = 1 ..... N), and cos ~m(Y + HI) 
(m = 1 ..... M) and integrated over the interval -HI 5 y 5 0 (for further details see [i]). 
The constants ~m and Ym may conveniently be expressed in terms of the remaining unknown com- 
plex constants, and the problem finally reduces to the numerical solution of a system of 4 + 
4N linear equations. 

2. Wave propagation in the presence of a submerged horizontal plate (Fig. ib) differs 
from the case of a rectangular obstacle mainly in that the fluid is able to flow beneath the 
plate. In order to solve this problem we divide the flow domain S into four rectangular 
parts, of which S I, S 2, and S 3 coincide with those introduced in (1.3), while S 4 = [0 < x < 
L, -HI"5 y ~ -Ha]. The function ~ is found in the expanded form: 

% = % -b bx - )  ~ (a,~ sh HmX "l- ~]m ch Hmx) cos Hm (g + H1)- 
Z"t ~ 1 

(2.1) 

The functions ~i, ~2, ~3 coincide with (1.4). A particular case of this problem is that of a 
plate on the free surface (H 2 = 0). Then the flow domain can be divided into parts $I, $3, 
and S~, in which the solution is represented by expressions (1.4) for ~i and ~3 and (2.1) 
for ~4 with ~m = m~/H1. The method of solution is similar to that of Sec. 1 and the problem 
reduces to a system of 4 + 4N linear equations for a submerged and 2 + 2N equations for a 

floating plate. 

The approximation in which the infinite sums in (1.4) and (2.1) are not taken into ac- 
count is often used for investigating wave diffraction by rectangular obstacles. The problem 
is then easy to solve analytically and, in particular, for the characteristics of the re- 
flected and transmitted waves we have the expressions 

A~ = W [ 2 Q Z ( I  - - c o s 0 ) - - ( 1  - -  Z~)sin 0l, D~ = 2 r ( Q s i n 0  + Z), ( 2 . 2 )  

, o c h  klH ~ 
where (Ao, Do) -- (4 ,  Do), 

F = s i n 0 [ i s i n 0  @ Z(I - -  cos0 ) l - l [ s in0 ( i  - -  2Q) - -  Z(l @ cos0)]  -1, 

s h 2 k l h  k lk2  s h  2 k l h  
Q Z =  . 

The reflection and transmission coefficients R and T are determined as follows: 

(~ ch klH 1 
(R, T)= (IAol, IDol)= ([Ao[, [Do[)- 

3 5 0  



In this approximation the horizontal flow velocity beneath the plate 

b* = abHt Htshk lh  " * * ~ i ) .  
ag = k'~-h-~-~lH t (Do - -  A~ 

In the  long-wave approx imat ion  (klH1,  k2H 2 ~ O) in e x p r e s s i o n s  (2 .2 )  we must use  

( 2 . 3 )  

Q = L k 2 ] / -  ~ Z =  , k 2 _  ( 2 . 4 )  ' 

* t * _ 2iQ 
For a floating plate expressions ( 2 . 2 )  can be considerably simplified: A 0 = 2-~--i' DO --2-Q-~- ~" 

and the reflection and transmission coefficients and the modulus of the horizontal velocity 
take the form: 

I 2Q 2 th klH 1 ( 2 . 5 )  

In the long-wave approximation these expressions give the well-known relations [7]: 

c R = V ~ . _ c 2  T 2 b* 2ctfl (c -=- a L / ] / ' - ~ 1  ) 

From relations (2.2) it is also easy to obtain the results of this approximation in the 
case of a rectangular obstacle; in this case the water cavities S 4 and S 5 are unimportant. 
For a rectangular obstacle we must set Q ~ O; then A0* = i(l - Z2)/d, Do* = - 2Z/d sin 8 (d = 
1 + Z 2 + 2iZ/tan 0). The reflection and transmission coefficients take the form: 

R = / ( t  -- Z2) sin0, T = 2/Z ( / =  [4Z 2 + (t -- Z2) sin 20 ]-V2). ( 2 . 7 )  

In order to obtain the long-wave approximation it is necessary to take the representa- 
tion (2.4) for Z in (2.7). We note that the two approximate solutions obtained for a rec- 
tangular obstacle are identical to the results given in [I] for a trench. 

3. In the numerical calculations we determined the reflection and transmission coeffi- 
cients, the constant component of the horizontal velocity for the plate, and the kinetic 
energy of the fluid enclosed in the cavities. In the case of a rectangular obstacle the ki-- 
netic energies Ekl and Ek2 in the domains S 4 and Ss, respectively, averaged over the oscilla- 
tion period and divided by the length h, are written as follows: 

- - H  2 

Ehl 2z~ qh ~ @ = -~6 ~ Bm t a.~ six 
--Hi m=l 

--H 2 

Eh2 = - ~  cD~--g-f- z d v = ~  ~ml?m]2sh2~m/v 
--Hi m=l 

(3.1) 

( 3 . 2 )  

where p is the density of the fluid, and < > denotes averaging with respect to time; the 
integration is carried out at x = 0 for Ekl and x = L for Ek2. The ratio of these quantities 
to the energy of the approaching wave per unit length E b = pga2/4 is equal to E i = Eki/Eb(i = 
i, 2) .  

In the case of a submerged plate by analogy with (3.1) 

Ekl P 2~o ~- ~m~m ( 3 . 3 )  8 
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TABLE i 

1-A/~, 

h'; M 0,05 0,1 0,i5 0,2 

R.t0 [E1.1021Eg-t0 R.t0 IE~-1021E2.t0' R-10 [El-1021E~.I02 R.10 [E,.10'IE~.i0' 
I 

7; 40 [ 4,065 8,05 
, :80  806 

40 i0: 4,089 7,22 
40 4,i09 ~5: 6,96 

20; 40 4,ii9 6,79 
20; 80 4,ti8 6,82 

t,105 
t .t06 
11001 
0,969 
0,947 
9,952 

5.t59 3,84 8,24 
5:i59 3,84 8,25 
5,t88 3,38 7,47 
5,213 3 .23  7,2i 
5,225 3A3 7,05 
5,224 3,15 7,08 

4,258 
4,257 
4,308 
4,352 
4,373 
4,372 

4,06 7,3t 
4,06 7,32 
3,56 6,63 
3,39 6,39 
3.28 6,24 
3130 6,27 

1,063 
t,062 
i,t52 
1,232 
t,272 
1,269 

6A6 
6A7 
5,54 
5,31 
5A6 
5,i9 

6,75 
6,76 
6,t5 
5,95 
5,82 
5,85 

and in (3.2) Cs must be replaced by r 

[o) T ~m [ ( l a ~  12 + ]l'm [~ ) sh 2 ~ L  + 2[,,, ch 2~3mL 1 . 
m = l  

(3.4) 

Here $0 = a0 rbr + a0ibi; Sm = ~mrTm r + ~ i; the superscripts r and i denote the real and 
imaginary parts. 

The convergence of the numerical results as a function of the number of terms retained 
in the expressions (1.4) and (2.1) is given in Tables 1 and 2 for a rectangular obstacle and 
a plate, respectively. The value of the reflection coefficient R, the modulus of the veloc- 
ity Ib*l and the energies E I and E 2 were obtained for H2/H ~ = 0.2, L/H l = 5, s = i, s 
H I = 4, and various values of N and M as a function of the ratio HI/I , where I = 2z/k I is the 
length of the incident wave. Clearly, a change in M has almost no effect on the results, 
whereas varying N can have a marked effect, especially on the energy characteristics. How- 
ever, for practical purposes a value N = 10-15 is sufficient. 

In [3] it is noted that for a plate floating at the free surface over the entire wave 
number interval the reflection coefficient in the complete solution is in fairly good agree- 
ment with the long-wave approximation (2.6) even when L/H I ~ 2. We were able to confirm this 
conclusion. On the interval in question for the reflection coefficient the complete solution 
coincides with the approximations (2.5), (2.6); however, a considerable discrepancy is ob- 
served on the short-wave interval for the value of the horizontal velocity. Figure 2 shows 
the function Ib*l for L/HI = 5, i0, and 15 (curves 1-3). The continuous curves correspond 
to the numerical solution with N = i0, M = 40, the broken curves to the approximation (2.5), 
and the chain curves to the approximation (2.6). In the long-wave approximation (2.6) the 
modulus of the horizontal velocity tends to a constant value as the length of the incident 
wave decreases, whereas in the approximation (2.5) and the numerical solution a decrease in 
velocity is observed. 

Figure 3 gives the values of R and Ib*l for a submerged plate (Fig. 3a, b) and R for a 
rectangular obstacle (Fig. 3c) when H2/H I = 0.2, L/HI = 5, s = s = 0, N = 15, and M = 40. 
The curves are distinguished in the same way as in Fig. 2. An interesting feature of the be- 
havior of these curves is their nonmonotonic dependence on the length of the approaching wave 
and the fact that, although the locations of the transmission windows almost coincide (ex- 
cept for the first value), the local maxima of the reflection coefficient differ in the case 
of a rectangular obstacle and a plate. For a plate with the given initial parameters when 
HI/I = 0.06 almost total reflection is observed, while for a rectangular obstacle the maximum 
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value of R is only 0.66 and corresponds to Hx/X = 0.02. We note that in the case of a rec- 
tangular obstacle and a trench (see, for example, [I]) the qualitative behavior of the re- 
flection and transmission coefficients is the same. In both cases for the complete solution 
the local maxima of R decrease monotonically (and hence the local minima of T increase) as 
the length of the approaching wave decreases, whereas the long-wave approximation gives con- 
stant values, and the approximation (2.7), although it reflects the decrease in R, makes it 
more intense than in the numerical solution. In the case of a submerged plate the decrease 
in the local R maxima is nonmonotonic, as can also be observed in both approximations. The 
horizontal velocity of the flow beneath the plate also oscillates but with twice the period 
of the reflection coefficient, the difference between the numerical solution and the approx- 
imation (2.3) being less perceptible than for the reflection coefficient. As in the case of 
a trench, the approximation (2.2) gives fairly accurate results only for relatively small 
differences in the depths H l and H 2. 

In Fig. 4 we have plotted the reflection coefficients for a rectangular obstacle with 
different water cavity dimensions and the same values of the other parameters as in Fig. 3c: 
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Fig. 5 

I) s = 5HI, s = 0 (white circles), 2) s = i2 = 2.5Hz (black circles). We note that the 
variant s = 0, s = 5H~ almost coincided with case 1 and the variant Zz = s = Hz with 2. 
The curve corresponds to the variant Z I = s = 0. The effect of the cavities on the diffrac- 
tion characteristics is weak and for relatively long waves almost nonexistent. As the depth 
of the obstacle increases, the influence of the cavities decreases. The behavior of the dy- 
namic pressure in the cavity of an obstacle similar in shape to case 1 was investigated in 
[8]. It was shown that the pressure varies only at the inlet to the cavity. 

The behavior of the kinetic energy (3.1)-(3.4) for a plate and a rectangular obstacle 
is illustrated in Figs. 5a and 5b for H2/H I = 0.2, L/Hz = 5, and s = s = 2.5Hz. The con- 
tinuous curve represents the values of Ez, the broken curve those of E 2. The sharp increase 
in El for a plate (Fig. 5a) when Hz/% ~ 0.06 corresponds to the total reflection regime for 
the incident wave in question. As the depth of the plate increases, this effect disappears 
and the energy characteristics decrease considerably. In the cavities of the obstacle the 
values of the kinetic energy are much smaller, and the local maxima of E z and E 2 correspond 
to the transmission windows in the same way as in wave propagation over a trench [1]o We 
note that values of El and E 2 very similar to those presented in Fig. 5b are observed when 
s = s = Hz and, moreover, similar values of El when s = 5Hz, s = 0 and of E~ when Z• = 0, 
~2 = 5Hz. 

Our investigations of wave scattering by various rectangular obstacles confirm the wide 
possibilities of varying the characteristics of the reflected and transmitted waves by vary- 
ing the geometry of the obstacle. 

LITERATURE CITED 

I. I. V. Sturova, "Propagation of plane surface waves over a partially covered rectangular 
trench," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1991). 

2. K. Takano, "The effects of a rectangular obstacle on wave propagation," Houille Blanche, 
No. 3 (1960). 

3. C. C. Mei and J. L. Black, "Scattering of surface waves by rectangular obstacles in 
waters of finite depth," J. Fluid Mech., 38, Part 3 (1969). 

4. J. N. Newman, "Propagation of water waves past long two-dimensional obstacles," J. Fluid 
Mech., 23, Part i (1965). 

5. S. S. Volt, "Passage of plane waves through a shallow-water zone," Tr. Mor. Gidrofiz. 
Inst. Akad. Nauk SSSR, 15 (1959). 

6. G. E. Kononkova, L. M. Voronin, and K. V. Pokazeev, "Reflection of long waves by under- 
water obstacles," in Collection: Theoretical and Experimental Investigation of Long- 
Wave Processes [in Russian], DVNTs Akad. Nauk SSSR, Vladivostok (1985). 

7. J. J. Stoker, Water Waves, Wiley (Interscience), New York (1957). 
8. S. Massel, "0 pewnym dwuwymiarowym zagadnieniu dyfrakcyjnym dla fal powierzchniowych," 

Rozpr. Hydrotechn., No. 48 (1986). 

355 


